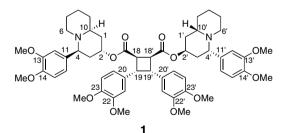


Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 7502-7504

Sarusubine A, a new dimeric Lythraceae alkaloid from *Lagerstroemia subcostata*


Kozue Watanabe,^a Takaaki Kubota,^a Takakazu Shinzato,^b Junji Ito,^c Yuzuru Mikami^c and Jun'ichi Kobayashi^{a,*}

^aGraduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan ^bFaculty of Agriculture, University of the Ryukyus, Okinawa 905-142, Japan ^cResearch Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University, Chiba 260-0856, Japan

> Received 19 July 2007; revised 13 August 2007; accepted 16 August 2007 Available online 22 August 2007

Abstract—A new dimeric Lythraceae alkaloid with a cyclobutane ring, sarusubine A (1), has been isolated from the leaves of *Lagerstroemia subcostata*, and the structure and stereochemistry were elucidated by spectroscopic data. © 2007 Elsevier Ltd. All rights reserved.

Lythraceae alkaloids are a group of natural products with arylquinolizidine skeleton, which have attracted great interest from biogenetic and synthetic points of view.¹ In our search for structurally unique and biogenetically interesting alkaloids,² sarusubine A (1),³ a new dimeric alkaloid with a cyclobutane ring, was isolated from the leaves of *Lagerstroemia subcostata* (Lythraceae). Here we describe the isolation and structure elucidation of **1**.

The relative stereochemistries for C-2/C-18 and C-2'/C-18' are not confirmed.

The leaves of *L. subcostata* corrected at Okinawa were extracted with MeOH, and the MeOH extract was par-

0040-4039/\$ - see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.08.059

titioned between EtOAc and 3% aqueous tartaric acid. Water-soluble materials, which were adjusted to pH 10 with saturated Na_2CO_3 , were extracted with CHCl₃, and CHCl₃-soluble materials were subjected to a silica gel column chromatography (CHCl₃/MeOH and then EtOAc/MeOH) to afford sarusubine A (1, 0.0047% yield) as a pale yellow amorphous solid.

Sarusubine A (1) $\{[\alpha]_D^{23} + 40.1 \ (c \ 1.0, MeOH)\}\$ showed that the pseudomolecular ion peak at m/z 963 $(M+H)^+$ in the ESIMS, and the molecular formula, $C_{56}H_{70}N_2O_{12}$, was established by HRESIMS [m/z 963.5012, $(M+H)^+$, Δ +0.5 mmu]. The IR absorption at 1732 cm⁻¹ implied the presence of ester carbonyl functionality. ¹H and ¹³C NMR data of 1 were similar to those of subcosine II,^{4,5} except for lack of signals due to a double bond of the latter compound.

The ¹³C NMR data of **1** revealed carbon signals due to two ester carbonyls, twelve sp² quaternary carbons, twelve sp² methines, ten sp³ methines, twelve sp³ methylenes, and eight methyls. Among them, two methylene carbons [δ_C 53.0 (2C)] and four methine carbons [δ_C 63.8 (2C), 57.2, and 57.1] were ascribed to those bearing a nitrogen atom. The ¹³C NMR signal pattern as well as the molecular weight indicated that **1** had a dimeric structure of a Lythraceae alkaloid such as subcosine II.

The ${}^{1}H{-}^{1}H$ COSY and TOCSY spectra of 1 revealed connectivities of four structural units, **a** (C-1 to C-4, C-6 to C-10, and C-1 to C-10), **b** (C-18 to C-19), **c**

Keywords: Sarusubine A; Lythraceae alkaloid; Lagerstroemia subcostata.

^{*} Corresponding author. Tel.: +81 11 706 3239; fax: +81 11 706 4989; e-mail: jkobay@pharm.hokudai.ac.jp

Table 1. ¹H and ¹³C NMR data of sarusubine A (1) in CDCl₃

Position	$\delta_{ m H}$	$\delta_{ m C}$	
1(1')a	1.80 (2H, m)	37.1 (2C)	t
1(1')b	1.65 (2H, m)		
2(2')	5.11 (2H, br s)	69.0 (2C)	d
3(3')	1.82 (4H, m)	39.6 (2C)	t
4(4')	3.12 (2H, br d, 10.4)	63.8 (2C)	d
6(6')	2.65 (4H, br d, 10.6)	53.0 (2C)	t
7(7′)a	1.52 (2H, m)	26.0 (2C)	t
7(7′)b	1.36 (2H, m)		
8(8′)a	1.65 (2H, m)	24.8 (2C)	t
8(8')b	1.17 (2H, m)		
9(9′)a	1.52 (2H, m)	33.5 (2C)	t
9(9′)b	1.23 (2H, m)		
10(10')	2.21 (2H, br t, 10.4)	57.2 (2C)	d
11(11')		136.8 (2C)	s
12(12')	6.67-6.84 (2H, m)	111.9 (2C)	d
13(13')		148.6 (2C)	s
14(14')		147.9 (2C)	s
15(15')	6.67–6.84 (2H, m)	110.7 (2C)	d
16(16')	6.67–6.84 (2H, m)	120.0, 119.9	d
17(17')		171.9 (2C)	s
18(18')	3.85 (2H, br s)	43.8 (2C)	d
19(19')	4.37 (2H, br s)	45.4 (2C)	d
20(20')		131.4, 131.3	s
21(22')	6.67-6.84 (2H, m)	111.9, 111.8	d
22(22')		148.6 (2C)	s
23(23')	6.67-6.84 (2H, m)	147.9 (2C)	s
24(24')	6.67-6.84 (2H, m)	110.7 (2C)	d
25(25')	6.67-6.84 (2H, m)	120.0, 119.9	d
OMe	3.65-3.85 (24H, m)	55.8-55.9 (8C)	q

(C-15 to C-16), and **d** (C-24 to C-25) as shown in Figure 1. HMBC correlations from H-4 to C-6 ($\delta_{\rm C}$ 53.0), H-6 to C-10 ($\delta_{\rm C}$ 57.2), and H-10 to C-4 ($\delta_{\rm C}$ 63.8) suggested that C-4, C-6, and C-10 were connected to each other through a nitrogen atom (N-5). The connection of C-2 and C-18 via an ester carbonyl group was implied by HMBC cross-peaks for H-2 and H-19 to C-17 ($\delta_{\rm C}$ 171.9). HMBC correlations observed for H-4 to C-12 ($\delta_{\rm C}$ 111.9) and H-21 to C-19 ($\delta_{\rm C}$ 45.4) indicated that 3,4-dimethoxyphenyl groups were attached to C-4 and C-19.

The fragment ion observed at m/z 300 in the EIMS spectrum of 1 suggested the presence of 1,2-bis(3,4-dimethoxyphenyl)ethane moiety (C-19 to C-25 and C-19' to C-25'). Sarusubine A (1) was treated with K₂CO₃ in MeOH (Scheme 1) to afford two hydrolysis products 2 and 3. The molecular formulae of 2 (C₁₇H₂₅NO₃) and 3 (C₂₄H₂₈O₈) derived from

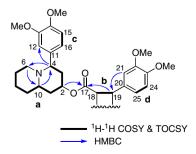
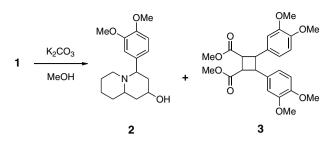



Figure 1. Selected 2D NMR correlations for a half part of sarusubine A (1).

Scheme 1. Methanolysis products (2 and 3) of sarusubine A (1).

HRESIMS [2, m/z 292.19252 (M+H)⁺, Δ -1.26 mmu] and [3, m/z 467.16628 (M+Na)⁺, Δ +1.9 mmu] supported the proposed structure (1).

The relative stereochemistry of the quinolizidine rings in 1 was deduced from NOESY correlations as shown in Figure 2. An axial orientation of H-4 and chair conformations of the two six-membered rings in the trans quinolizidine ring were derived from NOESY correlations of H-4/H-6b and H-10, H-6b/H-8b and H-10, and H-8b/H-10. The NOESY correlations of H-1b/H-2 and H-2/H-3a indicated an equatorial orientation of H-2.

The relative stereochemistry of the cyclobutane ring in 1 was elucidated as follows. Since ¹H and ¹³C NMR data suggested a symmetrical nature of 1, four possible stereostructures (A–D) were considered for the cyclobutane ring in 1 (Fig. 3). Possibilities of C and D were eliminated from the NOESY correlation observed between H-18 and H-21. For known cyclobutanes, in the case of A, protons corresponding to H-18 and 18', and

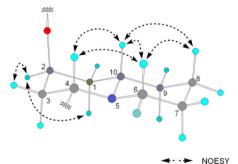


Figure 2. Selected NOESY correlations and relative stereochemistry for quinolizidine ring in sarusubine A (1).

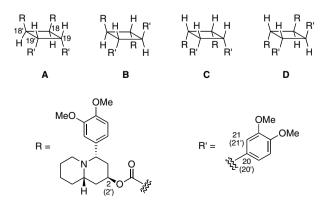


Figure 3. Possible stereostructures (A–D) for cyclobutane ring in sarusubine A (1).

H-19 and H-19' are observed in $\delta_{\rm H}$ 3.78–3.85 and 4.17–4.34,⁶ respectively, while in the case of **B**, those protons are observed in $\delta_{\rm H}$ 3.40–3.50 and 3.60–3.75,⁷ respectively. Since H-18 and 18', and H-19 and 19' of **1** appeared at $\delta_{\rm H}$ 3.85 and 4.37, respectively, relative stereochemistry of the cyclobutane ring in **1** was assigned as stereostructure **A**.

Since sarusubine A (1) is optically active³ and not a *meso* compound, the absolute stereochemistries of two quinolizidine rings in 1 could be the same. Thus, the structure of sarusubine A was elucidated to be 1.

Sarusubine A (1) is the first dimeric alkaloid with a cyclobutane ring among a number of Lythraceae alkaloids reported so far. Sarusubine A (1) showed weak antimicrobial activity against *Cryptococcus neoformans* and *Trichophyton mentagrophytes* (both MIC, 33.3 μ g/ml).

Acknowledgements

The authors thank Ms. S. Oka, Center for Instrumental Analysis, Hokkaido University, for measurements of EI- and ESI-MS. This work was partly supported by a grant from the Yakult Bio-Science Foundation and a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan.

References and notes

- For a review of Lythraceae alkaloids see: Fuji, K. In *The Alkaloid*; Brossi, A., Ed.; Academic Press: New York, 1989; Vol. 35, pp 155–176, and references cited therein.
- Saito, S.; Kubota, T.; Kobayashi, J. Tetrahedron Lett. 2007, 48, 5693–5695.
- 3. Sarusubine A (1): pale yellow amorphous solid; $[\alpha]_D^{23} + 40.1$ (c 1.0, MeOH); UV (MeOH) λ_{max} 280 (ε 10,100) and 229 (27,880) nm; IR (neat) v_{max} 1732 cm⁻¹; ¹H and ¹³C NMR, see Table 1; ESIMS m/z 963 (M+H)⁺; HRESIMS m/z 963.5012 (M+H)⁺, Δ +0.5 mmu.
- Fuji, K.; Yamada, T.; Fujita, E.; Murata, H. Chem. Pharm. Bull. 1978, 26, 2515–2521.
- Chalard, P.; Remuson, R.; Gelas-Mialhe, Y.; Gramain, J.-C. *Tetrahedron: Asymmetry* 1998, 9, 4361.
- (a) Bassani, D. M.; Darcos, V.; Mahony, S.; Desvergne, J.-P. J. Am. Chem. Soc. 2000, 122, 8795–8796; (b) Dimberg, L. H.; Andersson, R. E.; Gohil, S.; Bryngelsson, S.; Lundgren, L. N. Phytochemistry 2001, 56, 843–847.
- (a) Ben-Efraim, D. A.; Green, B. S. *Tetrahedron* 1974, 30, 2357–2364; (b) Pojarova, M.; Ananchenko, G. S.; Udachin, K. A.; Daroszewska, M.; Perret, F.; Coleman, A. W.; Ripmeester, J. A. *Chem. Mater.* 2006, *18*, 8795–8796.